

## **Roadmap for Nigeria's Energy Future\***

By

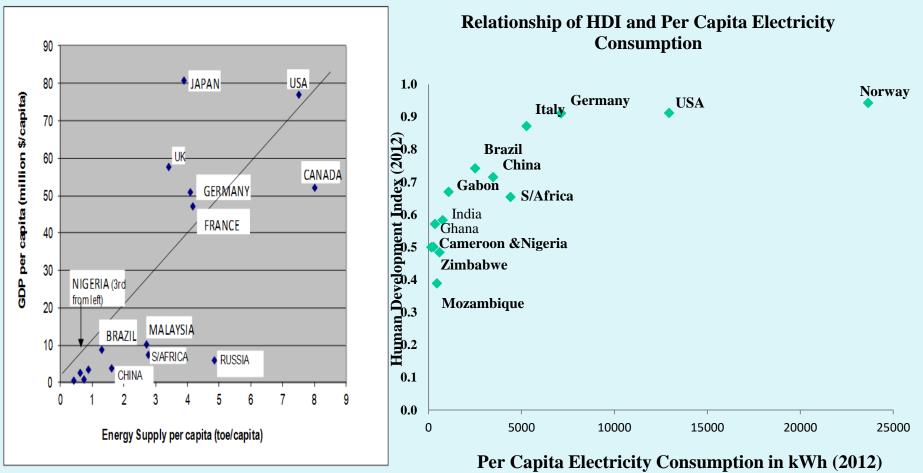
## Professor Eli Jidere Bala Director General, Energy Commission of Nigeria, Abuja. dg@energy.gov.ng or elijidere@gmail.com

\*Keynote Address present at the Nigeria Energy Forum 2017 (NEF2017) Organized in Collaboration with the Nigerian Institution of Electrical and Electronic Engineers, at the Lagos Chamber of Commerce and Industry, Ikeja, Lagos, 4<sup>th</sup> – 5<sup>th</sup> July 2017



- 1. Introduction
- 2. Energy Supply: Where we are?
- 3. Energy Supply: Where Do we Want to Be?
- **4.** Conclusion

# L. Introduction




- Energy, worldwide is one of the drivers of economic and social development.
- Nigeria therefore cannot be an exception.
- Fortunately, Nigeria is endowed with energy sources of fossil and renewable types that can be transformed into final energies of fuels, process heat and electricity essential for industrialization, economic and social development as well as improved standard of living of its citizens.

## 1. Introduction

## Cont'd.





Graphical representation of the relationship between Energy and the Economy (IEA, 2010)

Source: Human Development Report 2014 and IEA Key Energy Statistics 20

2



### a) Fossil Energy Resources and Nuclear Energy Sources

| S/N | Resources   | Reserves                             | Production                      | Domestic<br>Utilization                                        |
|-----|-------------|--------------------------------------|---------------------------------|----------------------------------------------------------------|
| 1   | Crude Oil   | 37.1 billion barrels                 | o.774 billion<br>barrels (2015) | o.o98 billion barrels<br>@ 4.9% capacity<br>utilization (2015) |
| 2   | Natural Gas | 182.3 Tscf                           | 2.9 Tscf (2015)                 | 88% : Utilized(2015)<br>12% : flared (2015)                    |
| 3   | Coal        | 2.7 billion tonnes                   | 0                               | Negligible                                                     |
| 4   | Tar Sands   | 31 billion barrels of oil equivalent | 0                               | 18.25 million barrels<br>(2014)                                |
| 5   | Nuclear     | Yet to be quantified                 | 0                               | 30kW experimental nuclear reactor                              |

Z.

## **Energy Supply: Where Are We?**



#### b) Renewable Energy Resources

| S/N | R            | esource                         | Reserve                                                               | Utilization Level                                               |
|-----|--------------|---------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|
| 1   | Large hydr   | o power                         | 11,250MW                                                              | 1,900MW                                                         |
| 2   | Small Hydi   | ro power                        | 3,500MW                                                               | 64.2MW                                                          |
| 3   | Solar Energ  | 3y                              | 4.0 kWh/m²/day<br>6.5kWh/m²/day                                       | 30MW solar PV stand-alone<br>No solar thermal electricity       |
| 4   | Wind         |                                 | 2-4m/s at 10m height                                                  | 2x2.5KW electricity generator;<br>10MW wind farm in Katsina     |
| 5   | Biomass      | Fuel wood                       | 11 million hectares of forest and woodlands                           | 43.4 million tonnes of<br>firewood/yr                           |
|     |              | Municipal<br>waste              | - 18.3 million tonnes in<br>2005* & about 30<br>million tonnes/yr now | -                                                               |
|     | Animal waste |                                 | - 243 million assorted<br>animals in 2001                             | -                                                               |
|     |              | Energy Crops<br>and agric waste | - 72 million hectares of<br>Agricultural land                         | 28.2 million hectares of Arable<br>land only 8.5% is cultivated |

Source: Renewable Energy Master Plan (REMP)

Z.



#### Nigeria's Energy Supply and The Economy

| S/N | ITEMS                                 | 2011       | 2012 | 2014       | 2016  |  |
|-----|---------------------------------------|------------|------|------------|-------|--|
|     |                                       | 24.5       |      | 25.5       |       |  |
| 1   | Electricity Consumption (billion kWh) | (619)*     | 26.2 | (657*)     | 30    |  |
|     |                                       | (20,407)** |      | (21963**)  |       |  |
|     |                                       | 730        |      | 760        |       |  |
| 2   | Total Energy Supply per               | (670)*     | 790  | (670*)     |       |  |
|     | Capita (Kgoe/cap)                     | (1880)**   |      | (1890**)   |       |  |
|     |                                       | 151        |      | 144        |       |  |
| 3   | Electricity Consumption               | (592)*     | 155  | 568*       | 161.3 |  |
|     | (kWh/Capita)                          | (2933)**   |      | 3030**     |       |  |
|     |                                       | 1471       |      | 2550       |       |  |
| 4   | GDP/Capita (US\$/Capita)              | (1281)*    | 1513 | (1923*)    | 1359  |  |
|     |                                       | (7520)**   |      | (10,058**) |       |  |
|     |                                       | 0.71       |      | 0.3        |       |  |
| 5   | Energy Intensity (kgoe/<br>US\$)      | (0.550)*   | 0.75 | (o.35*)    | 0.89  |  |
|     |                                       | (0.250)**  |      | (0.19*)    |       |  |
| 6   | GDP Growth Rate (%)                   | 7.4        | 6.6  | 6.3        | -1.51 |  |

Sources: Transmission Company of Nigeria (TCN) 2011-2015 \*Africa Average - IEA (2013 -2016) \*\*World Average - IEA (2013 -2016)

**Energy Supply: Where Do we Want to Be?** 

- The Energy Commission of Nigeria (ECN), which I superintend, was established in 1979 by law, amended in 1988 and 1989.
- The law and its amendments is now encapsulated in the ECN Act, CAP E10, LFN 2004.
- It however commenced operation in 1989 after the meeting of the Heads of ECOWAS on 29th May 1982 in Cotonou, where a decision was taken that each member state should establish by law, a body within the machinery of government, to be charged with the responsibility for coordinating and supervising all energy functions and activities within each Member State and may be called ENERGY COMMISSION of each Member State

Energy Supply: Where Do we Want to Be?

- So far, Ghana and Nigeria are the two ECOWAS member States that have successfully established Energy Commissions.
- The primary legal mandate of the ECN is to produce strategic plans and co-ordinate national policies on energy in all its ramifications.
- One of the first activities the Commission embarked on, upon commencement of operation was the development of a national energy policy instrument upon which national strategic energy plans would be derived from; and also upon which coordination would revolve.

## Energy Supply: Where Do we Want to Be? .....

3.

• The development of a National Energy Policy was therefore embarked under the arrow-head of Energy Commission between 1993 and 2003 with due consultation with stakeholders.

Cont

- It was approved by Federal Executive Council (FEC) in 2003 and reviewed in 2013. NEP has the following objectives:
  - (i) To ensure the development of the nation's energy resources, with diversified energy resources option for the achievement of national energy security and an efficient energy delivery system with an optimal energy resource mix;
  - (ii)To guarantee increased contribution of energy productive activities to national income.
  - (iii) To guarantee and efficient and cost effective consumption pattern of energy resources.

Energy Supply: Where Do we Want to Be? .....

- (iii) To guarantee adequate, reliable and sustainable supply of energy at appropriate costs and in an environmentally friendly manner, to the various sectors of the economy, for national development.
- (v) To accelerate the process of acquisition and diffusion of technology and managerial expertise in the energy sector and indigenous participation in energy sector industries, for stability and self-reliance.
- (vi) To promote increase investments and development of the energy sector industries with private sector leadership.
- (vii) To ensure a comprehensive, integrated and wellinformed energy sector plans and programmes for effective development.

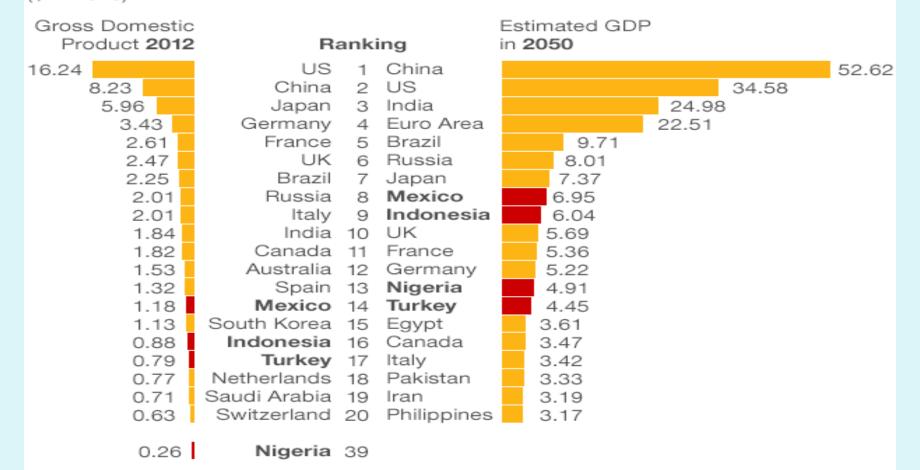
3.

Cont

## Energy Supply: Where Do we Want to Be? .....



- (viii) To foster international co-operation in energy trade and projects development in both the African region and the world at large.
- (ix) To successfully use the nation's abundant energy resources to promote international co-operation
- To promote research and development in, and adoption of, sustainable low carbon and clean energy technologies to mitigate environmental pollution and climate change.
- (xi) To promote gender sensitivity and special attention to rural energy needs.
- (xii) To promote efficiency, conservation and carbon management best practices in the nation's energy supply chain.
- (xiii) To ensure comprehensive and up-to-date availability of energy sector data and information
- (xiv) To ensure effective coordination of national energy planning, programmes and policy implementation.




#### 3.

### Energy Supply: Where Do we Want to Be? .....



#### Rise of the MINTs (\$ trillions)



Source: World Bank, Goldman Sachs

Nigeria's Ranking in the World based on GDP

- It may be recalled that the Nation envisioned to be amongst the 20 large economies in the world by 2020. Nigeria was number 39 in 2012. However with the rebasing in 2013, we jumped to number 26.
- STI roadmap 2030 recently approved by FEC quoted Pricewater house Cooper (PWC) 2015 report as having predicted that Nigeria ranked 20<sup>th</sup> in 2014 is to be 16<sup>th</sup> by 2030 and 9<sup>th</sup> by 2050.
- Whichever the case may be, this upwards movement requires adequate, reliable and cost effective supply of electricity, fuels and process heat in the economy.

- Energy supply must however be done in a responsible and sustainable manner i.e the energy trilemma must be faced squarely energy security, energy equity and environmental sustainability
- A study therefore conducted by Energy Commission of Nigeria on Nigeria's long term energy demand and supply using IAEA energy planning tools of MAED and MESSAGE predicted huge amount of energy requirements. The model has the economy, demography, life style and envisaged path for of industrialization as inputs, amongst others

## Petroleum

- To have a conducive business environment for petroleum industry operations
- Have enhanced exploration and exploitations of petroleum resources for the benefits of Nigeria
- Optimized domestic gas supplies particularly for power generation and industrial development and end gas flaring by 2020.
- Have a progressive fiscal framework that encourages further investment in the petroleum industry, while optimizing the revenue accruing to government
- Established commercially oriented and profit driven O/G entities
- Deregulated and liberalized downstream petroleum sector
- Efficient and effective regulatory agencies
- Openness and transparency in the industry
- Enhanced local content in the petroleum industry.
- Oil reserves of 40 billion barrels and production of 4mb/d by 2020

#### Projected Total Energy Demand for Fuel Petroleum Products for Nigeria

| Year | PMS (Million litres) |         |         | Aillion litres) | AGO (Millio | AGO (Million litres) |         | Fuel Oil (Million litres) |        | LPG (Thousand tonnes) |  |
|------|----------------------|---------|---------|-----------------|-------------|----------------------|---------|---------------------------|--------|-----------------------|--|
|      | 7%                   | 13%     | 7%      | 13%             | 7%          | 13%                  | 7%      | 13%                       | 7%     | 13%                   |  |
| 2009 | 5096.9               | 5096.9  | 356.1   | 356.1           | 565.6       | 565.6                | 120.0   | 120.0                     | 74.2   | 74.2                  |  |
| 2010 | 6180.0               | 8890.0  | 464.0   | 902.0           | 791.7       | 1177.9               | 160.0   | 270.0                     | 93.2   | 132.9                 |  |
| 2015 | 14460.0              | 19510.0 | 3788.0  | 7039.0          | 2301.9      | 3651.0               | 1800.0  | 3380.0                    | 1107.0 | 1871.2                |  |
| 2020 | 28170.4              | 35587.1 | 9038.7  | 22704.5         | 4176.8      | 6270.8               | 4632.1  | 9277.9                    | 2862.5 | 5733.5                |  |
| 2025 | 39769.4              | 55459•4 | 15084.9 | 44285.4         | 6231.8      | 11408.4              | 7806.1  | 20797.4                   | 4824.0 | 12852.3               |  |
| 2030 | 56457.2              | 88369.2 | 22064.9 | 77255.7         | 8902.4      | 21349.7              | 11374.6 | 45443•4                   | 7029.2 | 22903.7               |  |

Source: Energy Commission of Nigeria (2010) \* Punch 29<sup>th</sup> June 2014, pg 25

3.

COM

## b) Coal/Lignites, Tar Sands/Bitumen and Nuclear Energy

- i) **Coal and Lignite** 
  - To have a resuscitated coal industry through active private sector participation and with high local content
  - Adequate funding of coal to meet the energy and power requirement of the country in a cost effective and sustainable manner

## • ii) Tar Sands/Bitumen

• To have the tar sands/bitumen reserves explored and exploited through active private sector participation and high local content in an environmentally friendly manner for domestic and international markets

## • iii) Nuclear Energy

- To have nuclear energy utilized for peaceful purposes
- To have requisite manpower for peaceful use of nuclear power
- To have adequate storage and disposal of nuclear waste in an safe and sustainable manner

Energy Supply: : Where Do We Want to Be?

## c) Renewables and Energy Efficiency

- To have renewable energy mainstreamed into the nation's commercial energy mix through active participation of private sector and high local content
- To have renewables to contribute about 20% in meeting the electricity demand by 2030
- To have energy efficiency and conservation best practices promoted and its effect doubled by 2030

#### Renewable Electricity Supply Projection in MW (13% GDP Growth Rate)

|     | Resource             | Now                                  | Short  | Medium | Long    |
|-----|----------------------|--------------------------------------|--------|--------|---------|
| S/N |                      |                                      |        |        |         |
| 1   | Hydro (LHP)          | 1938                                 | 4,000  | 9,000  | 11,250  |
| 2   | Hydro (SHP)          | 60.18                                | 100    | 760    | 3,500   |
| 3   | Solar PV             | 15.0                                 | 300    | 4,000  | 30,005  |
| 4   | Solar Thermal        | -                                    | 300    | 2,136  | 18,127  |
| 5   | Biomass              | -                                    | 5      | 30     | 100     |
| 6   | Wind                 | 10.0                                 | 23     | 40     | 50      |
|     | All Renewables       | 2025.18                              | 4,628  | 15,966 | 63,032  |
|     | All Energy Resources | 8,700<br>(installed Gen<br>Capacity) | 47,490 | 88,698 | 315,158 |
|     | % of Renewables      | 23%                                  | 10%    | 18%    | 20%     |
|     | % RE Less LHP        | 0.4%                                 | 1.3%   | 8%     | 16%     |

Short – 2015

Medium - 2020

Long – 2030

Source: ECN

3

20

COM



#### (ii) Bio fuels Targets (Million Litres per Annum) for 13% growth scenario.

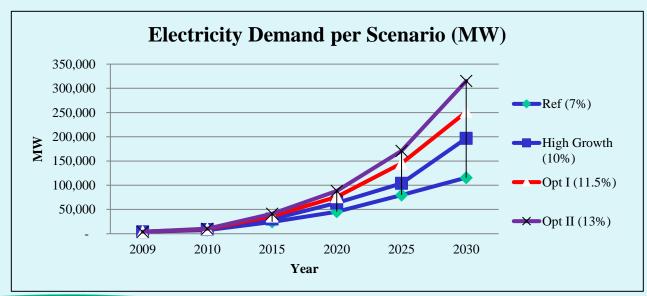
| S/N | Item              | <b>Timeline/Quantity</b> |        |      |  |  |
|-----|-------------------|--------------------------|--------|------|--|--|
|     |                   | Short                    | Medium | Long |  |  |
| 1   | Bio Ethanol (E10) | 1951                     | 3559   | 8837 |  |  |
| 2   | Biodiesel (B20)   | 730                      | 1254   | 4270 |  |  |

Source: ECN



## d) Electricity

3.


• That the electricity sub-sector contributes immensely to a double digit growth of the economy such that Nigeria becomes within the 20 largest economy in the world by 2020 or thereabout, through active private sector participation with high local contents and in an environmentally friendly manner. Projected power demand and supply for various scenarios from MAED and MESSAGE studies conducted are as shown in the following tables:



#### Electricity Demand Projections for Nigeria under various Economic Scenarios

|               | 2009  | 2010  | 2015      | 2020       | 2025   | 2030   |
|---------------|-------|-------|-----------|------------|--------|--------|
|               |       |       | 24380     | 45490      |        |        |
| Ref (7%)      | 4,052 | 7440  | (14,000)* | (40,000)** | 79798  | 115674 |
| High Growth   |       |       |           |            |        |        |
| (10%)         | 4,052 | 8420  | 30236     | 63363      | 103859 | 196875 |
| Opt I (11.5%) | 4,052 | 9400  | 36124     | 76124      | 145113 | 251224 |
|               |       |       |           |            |        |        |
| Opt II (13%)  | 4,052 | 10230 | 41133     | 88282      | 170901 | 315113 |

#### \*Power Roadmap Target (PRMT) by 2014 \*\* PRMT by 2020



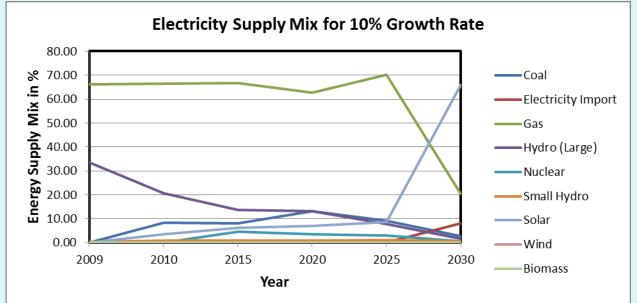
Source: ECN, 2012

3



#### Table 3a: Electricity Supply Projections by Fuel Type: Optimistic II Scenario 7%

|                           | 2009<br>(Based Yr) | 2010 | 2015  | 2020  | 2025  | 2030   |
|---------------------------|--------------------|------|-------|-------|-------|--------|
| Coal                      | 0                  | 609  | 1850  | 6527  | 7545  | 10984  |
| <b>Electricity Import</b> | 0                  | 0    | 0     | 0     | 0     | 31948  |
| Gas                       | 3803               | 4572 | 18679 | 33711 | 61891 | 80560  |
| Hydro (Large)             | 1930               | 1930 | 3043  | 6533  | 6533  | 6533   |
| Nuclear                   | 0                  | 0    | 1000  | 1500  | 2500  | 3500   |
| Small Hydro               | 20                 | 60   | 172   | 409   | 894   | 1886   |
| Solar                     | 0                  | 260  | 1369  | 3455  | 7000  | 25917  |
| Wind                      | 0                  | 10   | 19    | 22    | 25    | 29     |
| Biomass                   | 0                  | 0    | 3     | 16    | 35    | 54     |
| Supply                    | 5753               | 7440 | 26092 | 52174 | 86422 | 161411 |



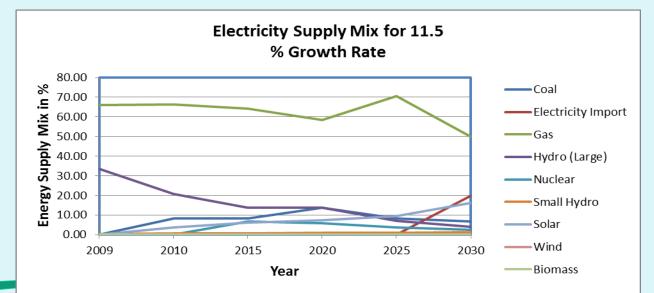

3



#### Table 3b: Electricity Supply Projections by Fuel Type: Optimistic II Scenario 10%

|                    | 2009 (Based<br>Yr) | 2010  | 2015  | 2020  | 2025   | 2030   |
|--------------------|--------------------|-------|-------|-------|--------|--------|
| Coal               | 0                  | 870   | 2579  | 9324  | 10778  | 15691  |
| Electricity Import | 0                  | 0     | 0     | 0     | 0      | 45640  |
| Gas                | 3803               | 6957  | 21328 | 44763 | 82702  | 115086 |
| Hydro (Large)      | 1930               | 2174  | 4348  | 9332  | 9332   | 9332   |
| Nuclear            | 0                  | 0     | 1500  | 2500  | 3500   | 3500   |
| Small Hydro        | 20                 | 81    | 246   | 585   | 1277   | 2694   |
| Solar              | 0                  | 377   | 1956  | 4936  | 10000  | 370225 |
| Wind               | 0                  | 18    | 28    | 32    | 36     | 42     |
| Biomass            | 0                  | 0     | 4     | 23    | 50     | 77     |
| Supply             | 5753               | 10476 | 31989 | 71495 | 117675 | 229086 |




3

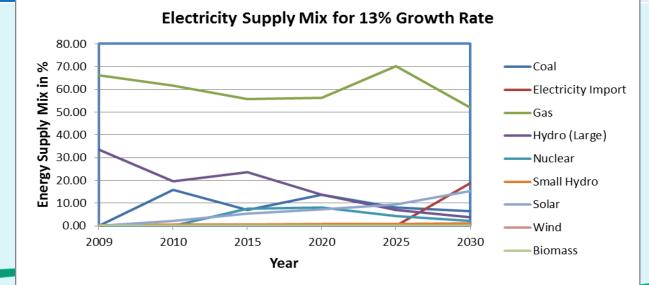
Engr. Prof. E.J. Bala



#### Table 3c: Electricity Supply Projections by Fuel Type: Optimistic II Scenario 11.5%

|                           | 2009 (Based<br>Yr) | 2010  | 2015              | 2020  | 2025   | 2030   |
|---------------------------|--------------------|-------|-------------------|-------|--------|--------|
| Coal                      | 0                  | 1000  | 2966              | 10723 | 12395  | 18045  |
| <b>Electricity Import</b> | 0                  | 0     | 0                 | 0     | 0      | 52486  |
| Gas                       | 3803               | 8000  | <sup>2</sup> 3377 | 45728 | 106607 | 132348 |
| Hydro (Large)             | 1930               | 2500  | 5000              | 10732 | 10732  | 10732  |
| Nuclear                   | 0                  | 0     | 2500              | 4500  | 5500   | 6369   |
| Small Hydro               | 20                 | 93    | 283               | 672   | 1469   | 3098   |
| Solar                     | 0                  | 434   | 2250              | 5677  | 14127  | 42578  |
| Wind                      | 0                  | 20    | 32                | 36    | 42     | 48     |
| Biomass                   | 0                  | 0     | 4                 | 27    | 58     | 88     |
| Supply                    | 5753               | 12047 | 36412             | 78095 | 150929 | 265794 |

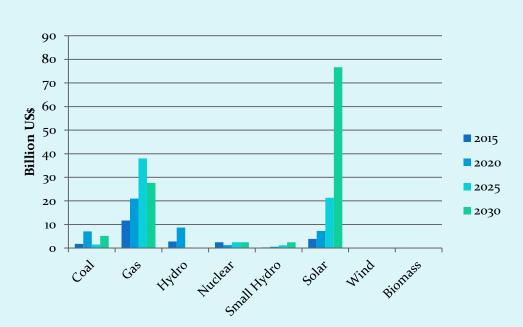



3.

Engr. Prot. E.J. Bala



Table 3d: Electricity Supply Projections by Fuel Type: Optimistic II Scenario 13%


|                           | 2009 (Based<br>Yr) | 2010  | 2015      | 2020  | 2025   | 2030   |
|---------------------------|--------------------|-------|-----------|-------|--------|--------|
| Coal                      | 0                  | 3353  | 3353      | 12122 | 14011  | 20399  |
| <b>Electricity Import</b> | 0                  | 0     | 0         | 0     | 0      | 59333  |
| Gas                       | 3803               | 13110 | 2642<br>6 | 49996 | 120512 | 164307 |
| Hydro (Large)             | 1930               | 4157  | 11207     | 12132 | 12132  | 12132  |
| Nuclear                   | 0                  | 0     | 3600      | 7200  | 7200   | 7200   |
| Small Hydro               | 20                 | 105   | 320       | 760   | 1660   | 3502   |
| Solar                     | 0                  | 490   | 2543      | 6417  | 15970  | 48132  |
| Wind                      | 0                  | 23    | 36        | 41    | 47     | 54     |
| Biomass                   | 0                  | 0     | 5         | 30    | 65     | 100    |
| Supply                    | 5753               | 21238 | 4749<br>0 | 88698 | 171598 | 315158 |

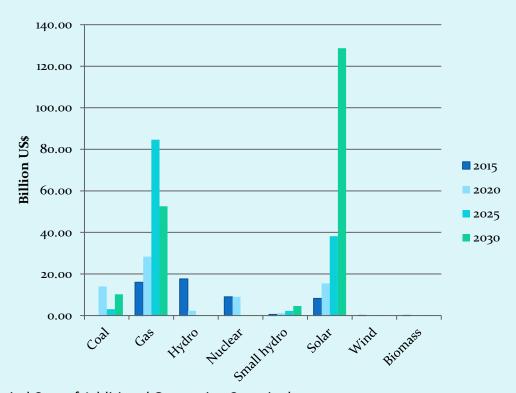


LIIGI. FIOI. L.J. Dala

#### Capital Cost of Additional Generating Capacity by Technology in Billion US Dollars for the Reference Scenario

| Resource    | 2015  | 2020  | 2025  | 2030   |
|-------------|-------|-------|-------|--------|
| Coal        | 1.79  | 7.08  | 1.53  | 5.16   |
| Gas         | 11.67 | 20.98 | 37.99 | 27.61  |
| Hydro       | 2.78  | 8.73  | 0     | 0      |
| Nuclear     | 2.5   | 1.25  | 2.5   | 2.5    |
| Small Hydro | 0.28  | 0.59  | 1.21  | 2.48   |
| Solar       | 3.88  | 7.3   | 21.35 | 76.67  |
| Wind        | 0.02  | 0.01  | 0.01  | 0.01   |
| Biomass     | 0     | 0.02  | 0.03  | 0.03   |
| Total       | 22.94 | 45.96 | 64.62 | 114.46 |




Capital Cost of Additional Generating Capacity by Technology in Billion US Dollars for the Reference Scenario

Source: ECN



# Capital Cost of Additional Generating Capacity by Technology in Billion US Dollars for the Optimistic II Scenario (13%)

|             | 2015  | 2020  | 2025   | 2030   |
|-------------|-------|-------|--------|--------|
| Coal        | 0.00  | 14.03 | 3.02   | 10.22  |
| Gas         | 15.98 | 28.28 | 84.62  | 52.55  |
| Hydro       | 17.63 | 2.31  | 0.00   | 0.00   |
| Nuclear     | 9.00  | 9.00  | 0.00   | 0.00   |
| Small hydro | 0.54  | 1.10  | 2.25   | 4.61   |
| Solar       | 8.21  | 15.50 | 38.21  | 128.65 |
| Wind        | 0.03  | 0.01  | 0.01   | 0.01   |
| Biomass     | 0.01  | 0.06  | 0.08   | 0.08   |
| Total       | 51.39 | 70.29 | 128.19 | 196.12 |



Capital Cost of Additional Generating Capacity by Technology in Billion US Dollars for the Optimistic II Scenario (13%)

Source: ECN

# . Conclusion

- AND TO COMPANY
- Nigeria's energy future must be such that supply is reliable, adequate, affordable and environmentally sustainable and the sector driven by the private sector.
- How we get there and at what speed will depend upon the political will exhibited by Governments of the country towards the vision.



# Thank you and God Bless

6/05/2021

Engr. Prof. E.J. Bala

31